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In this paper we numerically study the impact of quenched disorder induced by car accidents on traffic flow
in the Nagel-Schreckenberg(NS) model. Car accidents occur when the necessary conditions proposed by
[Boccaraet al.J. Phys. A 30, 3329 (1997)] are satisfied. Two realistic situations of cars involved in car
accidents have been considered. ModelA is presented to consider that the accident cars become temporarily
stuck. Our studies exhibit the “inverse-l form” or the metastable state for traffic flow in the fundamental
diagram and wide-moving waves of jams in the space-time pattern. ModelB is proposed to take into account
that the “wrecked” cars stay there forever and the cars behind will pass through the sites occupied by the
“wrecked” cars with a transmission rate. Four-stage transitions from a maximum flow through a sharp decrease
phase and a density-independent phase to a high-density jamming phase for traffic flow have been observed.
The density profiles and the effects of transmission rate and probability of the occurrence of car accidents in
modelB are also discussed.
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I. INTRODUCTION

Cellular automata(CA) models have been proven to be an
excellent tool for studying problems of traffic flow[1–3].
Owing to the space-time discrete update, CA models are easy
to implement on a computer to perform real-time simula-
tions, and they allow the flexibility to adapt complicated fea-
tures observed in real traffic systems. From a theoretical
point of view, these kinds of models, which belong to the
class of one-dimensional driven lattice gases, are of particu-
lar interest. The features of driven lattice gases(DLG) have
far-reaching consequences, because even the stationary state
of the system is not described in the framework of standard
equilibrium statistical mechanics[4]. Therefore, several the-
oretical and practical applications have improved the under-
standing of empirical traffic phenomena.

The first CA model for traffic flow which is able to repro-
duce the basic phenomena encountered in real traffic system,
e.g., phase transition from a freely moving phase to a jam-
ming phase, was proposed by Nagel and Schreckenberg(NS)
[5]. The NS model is a minimal model in the sense that any
further simplification of the model leads to unrealistic behav-
ior. In the past few years, some mutations of the NS model
have been suggested to describe the real traffic dynamics on
a more detailed level, such as the hysteresis effects(or the
metastable states) on a one-lane road[6–8], synchronized
traffic flow [9,10], etc.

Within the framework of the CA model, traffic accidents
have been studied recently[11–15]. With the help of the
necessary conditions for the occurrence of car accidents pro-
posed by Boccaraet al. [11], simulations of the probability
for car accidents to occur in the NS model have been offered.

The relations of car accidents to traffic flow and stopped cars
in the periodic system have also been studied[15]. But, in
the process of simulations, car accidents do not really occur
when the necessary conditions are simultaneously satisfied;
these dangerous situations are calculated and considered to
be the signal of the occurrence of accidents[13,14].

In many cases, the effects of quenched disorder on traffic
in the NS model have been extensively investigated. Basi-
cally, there are two different types of quenched randomness
which are associated with the cars(i.e., particles) [16–20]
and the road(i.e., sites) [21–25], respectively. In a model,
such cars or sites leading to quenched randomness are usu-
ally called defects which have different properties from the
rest. In the first case, corresponding to randomness in the
braking probability of drivers or speed limitvmax, the defect
particles may have a different time-independent braking
probability or a smaller maximal velocity. Such defects are
not localized in space, in contrast to those corresponding to
sitewise disorder, where in a localized region certain param-
eters of the model take different values, e.g., by imposing a
speed limit or increasing the deceleration probability.

In this paper, we present another quenched randomness
associated with car accidents. Cars involved in car accidents
can be considered as a defect and also lead to a local reduc-
tion of the capacity of the highway. Usually, traffic accidents
can give rise to traffic jams. But, unlike the localized defect
whose position is fixed on the road, defects of car accidents
can happen anywhere and anytime, and even more than one
car accident may take place on the road at the same time,
therefore both where and when car accidents occur are ran-
dom in real traffic systems. Also different from the defect
particles, whether car accidents occur or not is determined by
the dynamics of the model. According to results in Refs.
[11,15], the “wrecked” cars determined by traffic flow and
stopped cars can interrupt the traffic and lead to the reduction*Email address: xianqyang@sina.com.cn
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of traffic flow. Owing to the nonlinear relations between traf-
fic flow and car accidents, the situations are very complex
and should be investigated. As far as we know, traffic jams
induced by accidents have not been theoretically studied un-
til now, because all of the CA models developed so far have
been designed to avoid collisions among cars. Therefore,
there is an open question as to how traffic accidents affect
traffic flow. In this paper, we will adopt the conditions pro-
posed by Boccaraet al. to determine whether car accidents
happen or not[11], and extend the NS model to take into
account the effects of quenched randomness associated with
car accidents on traffic flow. Some features of the fundamen-
tal diagram in real traffic, such as the so-called “inverse-l
form” and a flat plateau(i.e., a density-independent flux),
have been obtained, depending on various situations of cars
involved in traffic accidents,

The present paper is organized as follows. In Sec. II, we
present the definition of the occurrence of traffic accidents
and the proposed models. The results of simulations are
given in Sec. III. The last section is devoted to a summary.

II. MODELS AND DEFINITION OF CAR ACCIDENTS

Before we start with our considerations of car accidents,
let us introduce the CA model established by Nagel and
Schreckenberg to describe single-lane highway traffic[5].
The model is defined on a one-dimensional lattice ofL
sites with periodic boundary conditions. Every site can
be either empty or occupied by a car with velocityv
=0,1,2 ,̄ ,Vmax. Let dE denote the number of empty cells
in front of a car andN denote the number of cars on the road,
thus car densityr is N/L. The following steps in parallel are
used for all cars. The first rule is acceleration. If the speed of
a car is lower thanVmax, the speed is increased by 1; the
second rule is deceleration due to other cars. If the speed is
higher thandE, then it is reduced todE. The third rule is
randomization. The speed of a moving car is decreased ran-
domly by one unit with a braking probabilityp. The fourth
rule is that the car moves forward according to its new speed
determined in rules 1–3.

Because of keeping a safe distance given in the second
rule of update, car accidents do not happen in the basic NS
model. However, in real traffic, car accidents often occur
because of careless drivers who do not respect safety dis-
tances. More precisely, if the car ahead is moving, expecting
its moving at the next time step, the careless driver has a
tendency to drive as fast as possible and increases safety
velocity given in the second rule of update by one unit with
a probabilityp8. At the next time step, it will arrive at the
position of the moving car ahead. If the moving car ahead is
suddenly stopped, a collision between the cars happens. Let
xsi ,td and vsi ,td denote the position and velocity of theith
car at timet, respectively. The probability for car accidents
to occur is calculated according to the following three
necessary conditions proposed by Boccaraet al. [11]. The
first condition is dEøVmax. The second condition is
vsi +1,td.0. The last condition isvsi +1,t+1d=0. When
those conditions are simultaneously satisfied, car accidents
occur with the probabilityp8. Although the probability for

car accidents has been studied in the basic CA models
[13–15], car accidents do not really happen. In the process of
numerical simulations, the above three necessary conditions
are only regarded as a dangerous situation and an indicator of
a car accident occurring.

The extended NS model we will present is considered as
follows. If these conditions are satisfied simultaneously, the
car will hit the car ahead with the probabilityp8, and then be
stopped suddenly. When the car really collides with the car
ahead, it becomes wrecked. Usually, the accident car either
becomes temporarily stuck or is stopped there for a long
time, depending on the realistic situations of cars involved in
accidents, e.g., the extent of the damage to the accident cars,
or the appearance of police cars. Thus, in this paper, we
mainly consider two situations of accident cars. ModelA
describes the situation in which the accident cars stop there
temporarily and begin to move forward freely afterT time
steps, whereT means the time interval during which the
accident car temporarily stops. When other cars reach the
positions occupied by accident cars, they will stop until the
accident cars ahead move forward. To keep the car density
on the road unchanged, we hypothesize in the paper that the
accident car is not deleted and is regarded as the usual one
after the time intervalT of temporary stay. ModelB consid-
ers that the “wrecked” car will stay there forever. In modelB,
the accident car can be treated as a bottleneck in the road; the
cars behind will pass through the site of the accident car with
a transmission rater. Different from the bottleneck, whose
position is immobile, the accident cars may appear anywhere
and anytime, so long as the conditions for the occurrence of
accidents are met.

The extended CA model has five parameters: the speed
limit Vmax, the stochastic braking probabilityp, the car den-
sity r, the time intervalT of temporary stay(or transmission
rate r), and the probability for car collisionsp8. Obviously,
the extended model returns to the basic NS model in the case
of p8=0. In the simulations, the length of a site corresponds
to 7.5 m on a real road, one automaton time step is 1 s, and
the velocity unit is roughly 27 km/h. It is assumed that
Vmax=5, which implies a maximum velocity of 135 km/h,
just as occurs in the normal free-flow speed in real traffic.
Data points of the fundamental diagram are obtained by av-
eraging over 2000 time steps and 20 initial configurations
and 20 stochastic seeds for the probabilityp8 in the system of
L=1000 after discarding transient values of 2000 time steps.
The inhomogeneous initial configurations are obtained from
stochastic distributions of the position and velocity of the
cars, and the homogeneous configurations correspond to the
cases in which the velocity of the cars and the interval be-
tween the nearest cars are uniform. In this paper, we mainly
study the effects of car accidents on the traffic flow and
ignore the braking probabilityp.

III. SIMULATION AND RESULTS

A. Model A

In this section, we discuss how the accident cars can
move forward freely after the time interval of temporary stay.
Let us consider the NS model withVmax=5 in the case of
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p=0. The probabilityp8 is set as 0.1. The fundamental dia-
gram is calculated from an initial homogeneous configura-
tion. As shown in Fig. 1, in the low-density region, where no
car accident happens, cars move forward freely, therefore
traffic flow kJl increases linearly as the car densityr in-
creases. In the high-density region, where the occurrence of
car accidents delays movements of other cars behind, traffic
flow becomes slower compared to the flow in the basic NS
model without car accidents.

Particularly, discontinuous reduction of traffic flow at
the critical densityrc is observed in Fig. 1, whererc=1/
s1+Vmaxd is the critical density. Below the critical density,
traffic flow reaches a maximum. Near the critical density
where car accidents would occur because of careless drivers,
once one car is stopped for a while due to car accidents, the
cars behind will rapidly pile up, leading to a sharp decrease
of the traffic flow. Thus, the “inverse-l form” of the traffic
flow in the fundamental diagram is observed, as shown in
Fig. 1.

More importantly, traffic flow depends nonuniquely on
car density, especially in the high-density region. As shown
in Fig. 1, another curve in the fundamental diagram is ob-
tained from an initial inhomogeneous configuration in the
case of the same parameters. In Fig. 1, traffic flow increases
linearly with the increase of car density in the very-low-
density region. But at the densityr1, which is below the
critical densityrc, traffic flow begins to depart from a linear
increase, and even decreases with a further increase of car
density, wherer1 represents the transition density from the
freely moving phase to the jamming phase in the case of an
initial inhomogeneous condition. In particular, as shown in
Fig. 1, the metastable state appears not only in the low-
density freely moving phase but also in the high-density jam-
ming phase.

The metastable state in the intervalr1,r,r2 in the fun-
damental diagram can be well explained as follows. Starting
from an initial inhomogeneous configuration, the system will
have some jams that are never smoothed out, due to the
occurrence of car accidents. The steady state in this case is

an inhomogeneous mixture of the jam-free region and
higher-density jammed regions. Obviously, these jammed re-
gions lower the average traffic flow, thus the lower branch of
traffic flow corresponds to an initial inhomogeneous condi-
tion. As for the initial homogeneous conditions, below the
critical densityrc, there is no car accident, thus no jam exists
and traffic flow will still be a linearly increasing function of
the density until the car density reaches the critical density
rc. Thus the upper branch corresponds to an initial homoge-
neous condition.

The density interval in which the metastable state of the
traffic flow occurs shrinks with the decrease of the time in-
tervalT of temporary stay(shown in the inset of Fig. 1). The
smaller the time intervalT of temporary stay, the smaller the
jams which never disappear completely due to car accidents,
therefore leading to the increase of the critical densityr1 at
which a transition from the freely moving phase to the
jammed phase takes place and the decrease of the densityr2
at which no metastable states exist.

Figure 2 shows the fundamental diagram calculated from
initial inhomogeneous configurations in the case of various
values of time intervalT of temporary stay. In Fig. 2, with
the increase of the time intervalT of temporary stay, the
jammed regions which are not smoothed out due to car ac-
cidents become larger, leading to a decrease of the traffic
flow, as expected in the high-density region.

The parameterp8 denotes the probability for a car acci-
dent to actually happen when dangerous situations arise.
Whenp8 is small, fewer accidents occur in the system, lead-
ing to the small decrease of traffic flow in the region of high
car density. In this case, due to the small fluctuation in the
occurrence of car accidents, traffic flow shows a multipeak
function of the car density near the critical densityrc (shown
in Fig. 3). With the increase ofp8, the occurrence of car
accidents results in a further decrease of the traffic flow.
These numerical results are shown in Fig. 3.

Figure 4 shows a space-time diagram in which the ex-
tended CA model displays a moving wave of jam induced by
accidents. If the accident cars are temporarily stuck, cars
behind will pile up soon. While the wrecks are removed, they
remain locked at a standstill because each driver is waiting
for the car ahead to move. When the cars ahead leave, the
cars still cannot accelerate instantly and must delay leaving

FIG. 1. The relation of the traffic flowkJl to the car densityr in
the system ofL=1000 in the case ofT=100 andp8=0.1. Circles
correspond to the initial homogeneous configurations and squares
correspond to the initial inhomogeneous conditions in modelA. The
metastable state in the intervalr1,r,r2 can be seen, wherer1

=0.10±0.02 andr2=0.24±0.02. The relation of the traffic flowkJl
to the car densityr in the case ofT=10 is shown in the inset.

FIG. 2. The relation ofkJl to the car densityr in the system of
L=1000 with various values ofT calculated from the initial inho-
mogeneous configurations. The probabilityp8=0.1 in modelA.
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for a moment because of not enough space in front of them.
Each departing car must delay in the same way, and this
causes the jam to “evaporate” starting from the forward
downstream end(near the wreck).

While some cars are still jammed, more cars are piling up
behind them at the trailing end of the jam. Even after the
wreck is removed, more cars are still “condensing” onto the
back of the jam. The traffic jam is like a solid object whose
front end is evaporating and whose back end is growing like
a crystal. The stoppage is creeping slowly upstream, in the
opposite direction to the moving cars. The accident is gone,
but a moving wave of stopped cars remains behind.

As shown in Fig. 4, since car accidents delay the move-
ment of other cars behind, the density far downstream is
lower than the density of maximum flow. The cars can move
forward freely in the low-density region, where spontaneous
formation of jams is highly unlikely. Therefore, the system
exhibits the phase-separated steady state consisting of a mac-
roscopic jam and a macroscopic free-flow regime, both of
which simultaneously coexist.

Now we briefly discuss the hypothesis that the accident
cars are not deleted from the system and are considered as
the usual ones after the time intervalT of temporary stay. In
real traffic, if car accidents occur, police cars may appear and
remove the wrecked cars. In this situation, we think that the

“wrecked” cars are removed, new cars will enter the system,
and can be considered as the usual ones. Thus, once car
accidents happen on the road, the cars behind will pile up,
leading to jams which will never disappear. Therefore, the
main features in the system will not be changed distinctly. In
another situation in which the accident cars are not deleted,
but stagger forward at a speed slower than that of the usual
ones after delaying several time steps, the jams formed due
to the occurrence of car accidents do not disappear forever in
the system when the car density is above the critical density
r1, because the accident cars move only in the region where
the car density is lower than the density of maximum traffic
flow. Thus such basic phenomena as the metastable state and
the moving wave of jams could also be observed.

B. Model B

In this subsection, we discuss another situation of the
“wrecked” car. When the car driven by the careless driver
hits the car ahead, it will stay at the site forever. In this case,
the “wrecked” car can be considered as the “defect,” just as
a bottleneck on the road in which other cars behind pass
through the site with a transmission rater. But, different
from the bottleneck on the road whose position is fixed, the
“wrecked” car determined by traffic flow can anchor at po-
sitions where the conditions for accidents to happen are met.

Let us consider the effects of the transmission rater on
the fundamental diagram. Figure 5 shows thekJl-r curve
obtained by averaging over 20 initial homogeneous configu-
rations and 20 stochastic seeds of the probability for trans-
mission rate in the system ofL=1000 in the case ofp8
=0.0003. Four phases are recognized in Fig. 5. As expected,
below the critical densityrc, no car accidents exist, therefore
cars move forward freely, and traffic flow increases linearly
with the increase of the densityr. Nearrc, the traffic flow
decreases sharply from the maximum traffic flow because of
the block of car accidents. Above the critical density, traffic
flow shows an approximate flat plateau in a certain interval
of the car density, as do the features of the fundamental
diagram in the NS model with a single “defect.” And in the
limit of high density, the traffic flow decreases linearly with
the increase of the car density, like that of the NS model,
owing to lower probability for accidents to occur.

FIG. 3. The relation ofkJl to the car densityr in the system of
L=1000 with various values ofp8 calculated from the initial inho-
mogeneous configurations. The time intervalT of temporary stay is
equal to 100 in modelA.

FIG. 4. A space-time diagram of modelA with r=0.16,T=50,
p8=0.1. Each horizontal row of dots represents the instantaneous
positions of the cars moving right while the successive rows of dots
represent the positions of the same cars at successive time steps.

FIG. 5. The relation ofkJl to the car densityr in the system
of L=1000 with various transmission ratesr in the case of
p8=0.000 03 in modelB.
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With the increase of transmission rate, the value of the
traffic flow in the flow-constant phase increases. The relation
of kJl to r is shown in Fig. 6. By nonlinear fitting, the traffic
flow can be approximately expressed as follows:

kJl = a + br + cr2, s1d

where a=0.028±0.004,b=0.62±0.02, andc=−0.15±0.02.
This is apparently different from the effects of the bottleneck
studied previously[23]. We can also observe from Fig. 5 that
the width of the flat plateau is decreased with the increase of
the transmission rater.

Different from the bottlenecks whose positions are fixed
from the beginning, whether the “wrecked” cars appear or
not is determined by traffic flow because of the nonlinear
relations between the occurrence of car accidents and traffic
flow [11,15]. If car accidents occur, the “wrecked” cars can
reduce traffic flow, but traffic flow directly related to car
accidents may result in the further occurrence of car acci-
dents, therefore the fundamental diagram and the relations
betweenkJl andr in our modelB are different from those in
models with bottlenecks, although the “wrecked” cars are
also fixed bottlenecks.

To understand the complex relations between traffic flow
and car accidents, we investigate the dynamic process of
traffic flow. Figure 7 shows the relations of traffic flow to

time during the initial time interval. As shown in Fig. 7, once
a car accident occurs, traffic can be interrupted and the value
of traffic flow is decreased because cars behind pass through
the position occupied by the “wrecked” car with the trans-
mission rater. The decrease of the traffic flow cannot pre-
vent cars from colliding with each other, and collisions be-
tween cars leads to a further decrease of traffic flow, until car
accidents could not occur. As shown in Fig. 7, after nearly
800 time steps, traffic flow fluctuates around one level be-
cause car accidents no longer occur.

Traffic flow can result in the occurrence of car accidents;
conversely, car accidents can interrupt traffic and reduce traf-
fic flow. Can an increase of traffic flow result in more car
accidents, or can the occurrence of car accidents be sup-
pressed only by a decrease of traffic flow? To grasp this
question, we investigate the relationship between the number
of car accidents and the transmission rater. As shown in Fig.
8, with an increase of the transmission rater, the number of
“wrecked” cars increases linearly, reaches a maximum, and
decreases with a further increase ofr. The rater for the
maximum of the number of “wrecked” cars is known as the
most probable rate, i.e., the rate at which car accidents occur
most frequently.

According to previous results in Ref.[15], the probability
of the occurrence of car accidents is directly related to traffic

FIG. 6. The relation of the traffic flow in the region of a flat
plateau to the transmission rater in the case ofp8=0.000 03 in
modelB. Solid line is the result of expression(1).

FIG. 7. The relation of traffic flowJ to time t in modelB with
r=0.5, r =0.5, andp8=0.000 03, during the initial time interval.

FIG. 8. The “wrecked” cars fractionNacc/N as a function of
transmission rater. Car densityr=0.5, andp8=0.000 03.

FIG. 9. Density profiles in modelB with r=0.5, and p8
=0.000 03. The inset shows density profiles in the free-moving
region.
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flow and stopped cars. The probability for car accidents to
occur increases with an increase of traffic flow, reaches a
maximum value, and decreases with a further increase of
traffic flow. In modelB, an increase of transmission rater
can cause an increase of traffic flow(shown in Fig. 6).
Therefore, the number of “wrecked” cars increases with an
increase of rater due to the small value of traffic flow. And
the number of “wrecked” cars can decrease with a further
increase of rater because of the small number of stopped
cars, although traffic flow is higher. These results also give
us the indication that two alternative effective means for
avoiding more car accidents may be adopted: the cars behind
pass through the defects very slowly or very quickly.

Figure 9 shows the density profiles for different transmis-
sion rater. Different from the density profiles in the models
with bottlenecks[1,24], where phase segregation states with
macroscopic high- and low-density regions have been iden-
tified, the density profiles show two different phases namely
the free-moving phase and the jamming phase, respectively.
As shown in Fig. 9, the “wrecked” cars distribute not uni-
formly but randomly in a region where the cars pile up.
Unlike the high-density region in models with bottlenecks,
density profiles in the jamming region exhibit the cracked
high-density phase. In the free-moving phase, as shown in
the inset in Fig. 9, car density can only be measured at the
sites consisting of exact equal intervals, therefore cars move
at the maximum speed.

In the opinion of Refs. [11,15], the production of
“wrecked” cars is a self-adaptive process. Once a car acci-
dent occurs on the road, cars behind will pile up, and the
stoppage will creep upstream in the opposite direction to
traffic flow. In this case, a moving jam wave will collide with
traffic flow and lead to additional car accidents, which result
in a further heaping of cars behind. The process will not
terminate until the increase in the local velocity of piling
cannot compensate for the reduced traffic flow around

“wrecked” cars, so that the cars can no longer pile up. There-
fore, the “wrecked” cars are inclined toward congregating
together, and in the free-moving region, cars move at the
maximum speed.

Traffic flow is also affected by the probabilityp8 for ac-
cidents to happen, because it directly determines how many
accidents occur on the road when the conditions for the
occurrence of accidents are met. Figure 10 shows the fun-
damental diagram in the case of various values ofp8 at r
=0.5. As shown in Fig. 10, smaller values of the parameter
p8 lead to less change of traffic flow when the car density is
above the critical density.

IV. CONCLUSION

In this paper, we investigated the effects of quenched ran-
domness associated with car accidents on traffic flow. We
adopt the conditions for the occurrence of car accidents pro-
posed by Boccaraet al.[11] to determine whether car acci-
dents happen or not, and consider two realistic situations
when car accidents occur. ModelA considers that the acci-
dent cars have simply become temporarily stuck, and can
move forward freely after the time interval of temporary stay.
Model B supposes that the “wrecked ”cars stand there for-
ever, and other cars behind pass over the sites occupied by
the “wrecked” cars with the transmission rater. Using com-
puter simulations, we find the metastable state or the “in-
versel form” of the traffic flow in the fundamental diagram
due to the delay of car accidents, which have been observed
from empirical investigations. A moving wave of jams
formed in modelA has also obtained. In modelA, if the
“wrecked” cars are weeded out after the time intervalT of
temporary stay, numerical simulations show the same
phenomena.

In modelB, car accidents lead to the four-stage transitions
of traffic flow, from the maximum traffic flow phase through
the sharp decrease phase and from the flat-plateau phase to
the high-density jamming phase. The density profiles show
two different phases, namely the free-moving phase and the
jamming phase, respectively. The effects of the transmission
rate on the traffic flow have been studied.

Unlike the localized defect whose position is fixed on the
road, whether car accidents occur or not is determined by the
dynamics of the model. Therefore, our results are different
from those corresponding to models with bottlenecks.

As far as we know, traffic jams induced by car accidents
have not really been studied until now, because all the mod-
els developed so far are designed to avoid collisions among
cars. In addition, experimental studies of accident jams are
impractical. Therefore, our models provide a possible ap-
proach to describe such traffic jams actually induced by car
accidents.

FIG. 10. The relation ofkJl to the car densityr in the system
of L=1000 with various probabilityp8 in the case ofr =0.5 in
modelB.
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